History of the lithium-ion battery

This is a history of the lithium-ion battery.

Batteries with metallic lithium electrodes presented safety issues,
most importantly the formation of lithium dendrites, that internally short-circuit the battery resulting in explosions. Also, dendrites often lose electronic contact with current collectors leading to a loss of cyclable Li+ charge.
Consequently, research moved to develop batteries in which, instead of metallic lithium, only lithium compounds are present, being capable of accepting and releasing lithium ions.

In 2017 (2 years before the 2019 Nobel Prize in Chemistry was awarded) George Blomgren offered some speculations on why Akira Yoshino's group produced a commercially viable lithium-ion battery before Jeff Dahn's group:

The performance and capacity of lithium-ion batteries increased as development progressed.

Industry produced about 660 million cylindrical lithium-ion cells in 2012; the 18650 size is by far the most popular for cylindrical cells. If Tesla were to have met its goal of shipping 40,000 Model S electric cars in 2014 and if the 85-kWh battery, which uses 7,104 of these cells, had proved as popular overseas as it was in the United States, a 2014 study projected that the Model S alone would use almost 40 percent of estimated global cylindrical battery production during 2014. As of 2013[update], production was gradually shifting to higher-capacity 3,000+ mAh cells. Annual flat polymer cell demand was expected to exceed 700 million in 2013.[needs update]

Prices of lithium-ion batteries have fallen over time. Overall, between 1991 and 2018, prices for all types of lithium-ion cells (in dollars per kWh) fell approximately 97%. Over the same time period, energy density more than tripled. Efforts to increase energy density contributed significantly to cost reduction.

In 2015, cost estimates ranged from $300-500/kWh[clarification needed]. In 2016 GM revealed they would be paying US$145/kWh for the batteries in the Chevy Bolt EV. In 2017, the average residential energy storage systems installation cost was expected to drop from $1600 /kWh in 2015 to $250 /kWh by 2040 and to see the price with 70% reduction by 2030. In 2019, some electric vehicle battery pack costs were estimated at $150-200, and VW noted it was paying US$100/kWh for its next generation of electric vehicles.

Batteries are used for grid energy storage and ancillary services. For a Li-ion storage coupled with photovoltaics and an anaerobic digestion biogas power plant, Li-ion will generate a higher profit if it is cycled more frequently (hence a higher lifetime electricity output) although the lifetime is reduced due to degradation.

Several types of lithium nickel cobalt manganese oxide (NCM) and lithium nickel cobalt aluminium oxide (NCA) cathode powders with a layered structure are commercially available. Their chemical compositions are specified by the molar ratio of component metals. NCM 111 (or NCM 333) have equimolar parts of nickel, cobalt and manganese. Notably, in NCM cathodes, manganese is not electroactive and remains in the oxidation state +4 during battery's charge-discharge cycling. Cobalt is cycled between the oxidation states +3 and +4, and nickel - between +2 and +4. Due to the higher price of cobalt and due to the higher number of cyclable electrons per nickel atom, high-nickel(also known as "nickel-rich") materials (with Ni atomic percentage > 50%) gain considerable attention from both battery researchers and battery manufacturers. However, high-Ni cathodes are prone to O2 evolution and Li+/Ni4+ cation mixing upon overcharging.

As of 2019[update], NMC 532 and NMC 622 were the preferred low-cobalt types for electric vehicles, with NMC 811 and even lower cobalt ratios seeing increasing use, mitigating cobalt dependency. However, cobalt for electric vehicles increased 81% from the first half of 2018 to 7,200 tonnes in the first half of 2019, for a battery capacity of 46.3 GWh.

In 2010, global lithium-ion battery production capacity was 20 gigawatt-hours.
By 2016, it was 28 GWh, with 16.4 GWh in China. Production in 2021 is estimated by various sources to be between 200 and 600 GWh, and predictions for 2023 range from 400 to 1,100 GWh.

An antitrust-violating price-fixing cartel among nine corporate families, including LG Chem, GS Yuasa, Hitachi Maxell, NEC, Panasonic/Sanyo, Samsung, Sony, and Toshiba was found to be rigging battery prices and restricting output between 2000 and 2011.

Cart

loader
Top
0